

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) Well set out solutions with clear logic were more successful. Mid-range responses found the gradient of $Q O$ but then many multiplied it by $\frac{p}{2}$ stating $\frac{p}{2} \times \frac{q}{2}=-1$ and therefore $p q=-2$.
(ii) It was important to relate the results in (c)(i) to this part. The most successful method simply stated that $\frac{p}{2} \times q=\frac{p q}{2}=\frac{-2}{2}=-1$. Some candidates who could not establish the result in part (i) nevertheless used the result to successfully complete part (ii).
(iii) In the better responses, candidates who recognised that $P Q L K$ was a cyclic quadrilateral were quite efficient and effective at explaining why $M L=M K$. Those who tried coordinate geometry formulae found that it was nearly impossible to prove the result and so they spent valuable time completing large amounts of algebra to little benefit.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

