Frensham 2014 HSC Mathematics Extension 1 Trial HSC Examination Worked solutions and marking guidelines

Section	ı I	
	Solution	Criteria
1	Domain: $-1 \le \frac{x}{2} \le 1$ or $-2 \le x \le 2$. Range: $\frac{1}{2} \times 0 \le y \le \frac{1}{2} \times \pi$ or $0 \le y \le \frac{\pi}{2}$	1 Mark: C
2	$P(x) = x^{3} + ax + 1$ $P(-2) = (-2)^{3} + a \times -2 + 1 = 5$ $-2a = 12$ $a = -6$	1 Mark: A
3	$\int \frac{x}{(2-x^2)^3} dx = -\frac{1}{2} \int \frac{1}{u^3} du$ $u = 2 - x^2$ $= -\frac{1}{2} \times -\frac{1}{2} u^{-2} + C$ $\frac{du}{dx} = -2x$ $-\frac{1}{2} du = x dx$ $= \frac{1}{4(2-x^2)^2} + C$	1 Mark: B
4	$\int_{0}^{1} \frac{1}{x^{2} + 1} dx = \left[\tan^{-1} x \right]_{0}^{1}$ $= \frac{\pi}{4} - 0$ $= \frac{\pi}{4}$	1 Mark: A
5	Number of arrangements = $\frac{11!}{2 \times 2!}$ (2 I's and 2 B's) = 9 979 200	1 Mark: B
6	For $y = 2x$ then $m_1 = 2$ For $x + y - 5 = 0$ then $m_2 = -1$	1 Mark: D

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2 - (-1)}{1 + 2 \times -1} \right|$$

$$= 3$$

$$\theta = 71.56505118...$$

$$\approx 72^{\circ}$$

	polynomial is above the <i>x</i> -axis.	
	Test values in each region	
	$x \le 1$ and $4 < x \le 5$	
	Note Alternate method: since $x \neq 4$ answer must be B or D then	
	test $x = 0$ in original inequality which gives $\frac{5}{4} > 0$ which is true so	
	x = 0 must be included in the solution :. D	
	v = 2x + 5	
	$v^2 = 4x^2 + 20x + 25$	
10	$\frac{1}{2}v^2 = 2x^2 + 10x + \frac{25}{2}$	1 Mark: C
10	$a = \frac{d}{dx} \left(2x^2 + 10x + \frac{25}{2} \right)$	i Mark. C
	=4x+10	
	When $x = 1$ then $a = 14$	

Section II 11(a) Let the roots be α, β and $\alpha - \beta$. 3 Marks: Correct answer. $4x^3 - 4x^2 - 29x + 15 = 0$ $\alpha + \beta + (\alpha - \beta) = -\frac{b}{a} = -\frac{-4}{4} = 1$ 2 Marks: Makes $2\alpha = 1$ or $\alpha = \frac{1}{2}$ significant progress towards the $\alpha\beta(\alpha-\beta) = -\frac{d}{a}$ solution. $\frac{1}{2}\beta(\frac{1}{2}-\beta) = -\frac{15}{4}$ 1 Mark: Finds the sum or $\beta(\frac{1}{2}-\beta) = -\frac{15}{2}$ product of the roots. $2\beta^2 - \beta - 15 = 0$ $(2\beta + 5)(\beta - 3) = 0$ $\beta = -\frac{5}{2}$ or $\beta = 3$ Roots are $x = -\frac{5}{2}$, $x = \frac{1}{2}$ and x = 311(b) 2 Marks: $\angle PAB = 90^{\circ}$ (Angle between a tangent and radius) Correct answer. $\angle POC = 90^{\circ}$ (Angle between a tangent and radius) 1 Marks: $\therefore OC \mid AB$ (cointerior angles are supplementary) Makes some $\angle OCB = 180 - x^{\circ}$ (Cointerior angles on | lines) progress $\angle DCE = x^{\circ}$ (angles on straight line) towards the solution. $\angle EDC = 90^{\circ}$ (angle in a semicircle is a right angle) $\angle CED = 180^{\circ} - 90^{\circ} - x^{\circ}$ (angle sum $\triangle CED$) $\angle CED = 90^{\circ} - x^{\circ}$ 18Q-x

11(c)	LHS = $\frac{\sin\theta}{\sin\theta + \cos\theta} + \frac{\sin\theta}{\cos\theta - \sin\theta}$ $= \frac{\sin\theta(\cos\theta - \sin\theta) + \sin\theta(\cos\theta + \sin\theta)}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}$ $= \frac{2\sin\theta\cos\theta}{\cos^2\theta - \sin^2\theta}$ $= \frac{\sin 2\theta}{\cos 2\theta}$ $= \tan 2\theta = \text{RHS}$	2 Marks: Correct answer. 1 Marks: Uses a relevant trigonometric identity
11(d)	Number of ways = ${}^{10}C_3 \times {}^{12}C_2$ = 120×66 = 7920 Class can be selected in 7920 ways.	2 Marks: Correct answer. 1 Marks: Shows some understanding.

12(a)	To find the gradient of the tangent	2 Marks: Correct
(i)	$y = \frac{1}{4a}x^2$ and $\frac{dy}{dx} = \frac{1}{2a}x$	answer.
	$y = \frac{1}{4a}x$ and $\frac{1}{dx} = \frac{1}{2a}x$	134 1 5: 1 4
	At $P(2ap, ap^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2ap = p$	1 Mark: Finds the gradient of the tangent or the
	Equation of the tangent at $P(2ap, ap^2)$	coordinates of A
	$y - y_1 = m(x - x_1)$	and B .
	$y - ap^2 = p(x - 2ap)$	
	$y = px - ap^2$	
	x-intercept ($y = 0$) then $x = ap$. Hence $A(ap, 0)$	
	y-intercept ($x = 0$) then $y = -ap^2$. Hence $B(0, -ap^2)$	
	Midpoint of A and B .	
	$M\left(\frac{ap+0}{2}, \frac{0+-ap^2}{2}\right) = M\left(\frac{ap}{2}, \frac{-ap^2}{2}\right)$	
12(a)	To find the locus of M eliminate p from coordinates of M	1 Mark: Correct
(ii)	Now $x = \frac{ap}{2}$ (1) and $y = \frac{-ap^2}{2}$ (2)	answer.
	From (1) $p = \frac{2x}{a}$ and sub into eqn (2)	
	$y = \frac{-a(\frac{2x}{a})^2}{2} = \frac{-a}{2} \times \frac{4x^2}{a^2} = -\frac{2x^2}{a}$	
	or $x^2 = -\frac{1}{2}ay$ (parabola)	
12(a) (iii)	$x^2 = -\frac{1}{2}ay = 4 \times \left(-\frac{1}{8}a\right) \times y$	1 Mark: Correct answer.
	Focus is $\left(0, -\frac{1}{8}a\right)$ and equation of the directrix $y = \frac{1}{8}a$	
12(b)	Step 1: To prove the statement true for $n = 1$	3 Marks: Correct
	LHS = 1 RHS = $2^1 - 1 = 1$	answer.
	Result is true for $n = 1$	2 Marks: Proves the result true for
	Stan 2: Assume the regult two for a L	n=1 and
	Step 2: Assume the result true for $n = k$ $1 + 2 + 4 + + 2^{k-1} = 2^k - 1$	attempts to use the result of
	Step 3: To prove the result is true for $n = k+1$	n = k to prove
	i.e. prove $1+2+4++2^{k-1}+2^k=2^{k+1}-1$	the result for $n = k + 1$.
		$n-\kappa+1$.

		T T
	LHS = $1 + 2 + 4 + + 2^{k-1} + 2^k$ = $2^k - 1 + 2^k$	1 Mark: Proves the result true for
	$= 2 - 1 + 2$ $= 2 \times 2^{k} - 1$ using assumption	n=1.
	$= 2^{k+1} - 1$	
	= RHS	
	Result is true for $n = k + 1$ if true for $n = k$	
	Step 3: Proven true for $n = 1$, assuming true for $n=k$ proven true for $n=k+1$, so true for $n=1+1=2$, $1+2=3$, and Result true by principle of mathematical induction for all positive integers n .	
12(c)	$\sin\left[\cos^{-1}\frac{2}{3} + \tan^{-1}\left(\frac{-3}{4}\right)\right] = \sin\left[\cos^{-1}\frac{2}{3} - \tan^{-1}\frac{3}{4}\right]$	2 Marks: Correct answer.
	Let $\alpha = \cos^{-1}\frac{2}{3}$ and $\beta = \tan^{-1}\frac{3}{4}$	
	$\sin\left[\cos^{-1}\frac{2}{3}-\tan^{-1}\frac{3}{4}\right] = \sin\alpha\cos\beta - \cos\alpha\sin\beta$	1 Mark: Sets up the two triangles or shows some understanding of the problem.
	$= \frac{\sqrt{5}}{3} \times \frac{4}{5} - \frac{2}{3} \times \frac{3}{5}$ $= \frac{4\sqrt{5}}{15}$	
12(d)	Let $\sin\theta + \cos\theta = R\sin(\theta + \alpha)$	3 Marks: Correct
	$= R \sin \theta \cos \alpha + R \cos \theta \sin \alpha$	answer.
	$\therefore R\cos\alpha = 1 \text{ and } R\sin\alpha = 1$	2 Marks: Finds
	$R^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 2$ and $\tan \alpha = 1$ or $\alpha = \frac{\pi}{4}$ $R = \sqrt{2}$	two angles or makes significant progress towards the solution.
		1 Mark: Sets up the sum of two

	$\sin\theta + \cos\theta = \sqrt{2}\sin(\theta + \frac{\pi}{4}) = 1$ $\sin(\theta + \frac{\pi}{4}) = \frac{1}{\sqrt{2}}$	angles or shows some understanding of the problem.
	$\theta + \frac{\pi}{4} = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \dots$ $\theta = 0, \frac{\pi}{2}, 2\pi$	
12(e) (i)	$f(x) = \sin^{-1} x + \cos^{-1} x$ $f'(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0$	1 Mark: Correct answer.

12(e) (ii)	Since $f'(x) = 0$, $f(x)$ is a constant (gradient of tangent is 0) Let $x = 0$ then $f(0) = \sin^{-1} 0 + \cos^{-1} 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$ Therefore $f(x) = \frac{\pi}{2}$ for $0 \le x \le 1$	2 Marks: Correct answer. 1 Mark: Recognises that the graph is a horizontal line or shows some understanding of the problem.
13(a) (i)	$f(x) = xe^{x} - 1$ $f(0) = 0 \times e^{0} - 1 = -1 < 0$ $f(1) = 1 \times e^{1} - 1 = e - 1 > 0$ Since f(0) and f(1) have opposite signs and f(x) is a continuous function Therefore the root lies between $x = 0$ and $x = 1$.	1 Mark: Correct answer.
13(a) (ii)	$f(x) = xe^{x} - 1 \qquad f'(x) = xe^{x} + e^{x} = e^{x}(x+1)$ $f(0.5) = 0.5e^{0.5} - 1 \qquad f'(0.5) = e^{0.5}(0.5+1) = 1.5e^{0.5}$ $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$ $= 0.5 - \left(\frac{0.5e^{0.5} - 1}{1.5e^{0.5}}\right) = 0.5710204398 \approx 0.57$	2 Marks: Correct answer. 1 Mark: Finds $f(0.5)$, $f'(0.5)$ or shows some understanding of Newton's method.
13(b) (i)	Horizontal Motion $\ddot{x} = 0$ $\dot{x} = c_1$ (when $t = 0, \dot{x} = v \cos 40^\circ$) $\dot{x} = v \cos 40^\circ$ $x = v \cos 40^\circ t + c_2$ (when $t = 0, x = 0$) $x = v \cos 40^\circ t$ (1) Vertical Motion $\ddot{y} = -10$ $\dot{y} = -10t + c_1$ (when $t = 0, \dot{y} = v \sin 40^\circ$) $\dot{y} = -10t + v \sin 40^\circ$ $y = -5t^2 + v \sin 40^\circ t + c_2$ (when $t = 0, y = 0$) $y = -5t^2 + v \sin 40^\circ t$ (2)	3 Marks: Correct answer. 2 Marks: Derives either the horizontal or vertical equations of motion. 1 Mark: States the expressions.

13(b) (ii)	From eqn (1) $t = \frac{x}{v \cos 40^{\circ}}$ sub into eqn (2)	2 Marks: Correct answer.
	$y = -5\left(\frac{x}{v\cos 40^{\circ}}\right)^{2} + v\sin 40^{\circ} \left(\frac{x}{v\cos 40^{\circ}}\right)$ $= -\frac{5x^{2}}{v^{2}}\sec^{2} 40^{\circ} + x\tan 40^{\circ}$	1 Mark: Eliminates <i>t</i> or shows some understanding.
13(b) (iii)	To find v for $x = 20$ and $y = 6$ $6 = -\frac{5 \times 20^2}{v^2} \sec^2 40^\circ + 20 \times \tan 40^\circ$	2 Marks: Correct answer.
	$6 = -\frac{1}{v^2} \sec^2 40 + 20 \times \tan 40$ $v^2 = \frac{5 \times 20^2 \times \sec^2 40^\circ}{20 \tan 40^\circ - 6}$ $v = 17.77917137$ $\approx 17.8 \text{ ms}^{-1}$	1 Mark: Makes some progress towards the solution.
13(c) (i)	Will have an inverse if strictly increasing or strictly decreasing only. Largest domain, containing $x = 0$ where this occurs is $x \le 2$	1 Mark: Correct answer.
13(c) (ii)	Domain of $y = f^{-1}(x)$ is the range of $y = f(x)$. Range of $y = f(x)$ is $y \ge 0$. \therefore domain of $y = f^{-1}(x)$ is $x \ge 0$.	1 Mark: Correct answer.
13(c) (iii)	Interchanging x and y, the inverse is $x = (y-2)^2$ $y-2 = \pm \sqrt{x}$ $y = 2 \pm \sqrt{x}$ But as $x \le 2$ for the inverse to exist, $y = 2 - \sqrt{x}$.	1 Mark: Correct answer.
13(c) (iv)	$y = f(x)$ and $y = f^{-1}(x)$ intersect on the line $y = x$. $\therefore y = (x-2)^2$ and $y = x$ can be solved simultaneously to give the points of intersection for $y = f(x)$ and $y = f^{-1}(x)$. They meet when $x = (x-2)^2$ i.e. when $x = x^2 - 4x + 4$	2 Marks: correct explanation for why $x = (x-2)^2$ gives the point of intersection; and correctly solves equation and

	$x^2 - 5x + 4 = 0$ (x-4)(x-1) = 0 x = 1 or 4 But as $x \le 2$ for the inverse to exist, $y = f(x)$ and its inverse meet when $x = 1$.	explains why one solution only. 1 Mark: one of above
14(a)	$\int \cos^2 2x dx = \int \frac{1}{2} (1 + \cos 4x) dx$	2 Marks: Correct answer.
	$= \frac{1}{2} \left[x + \frac{1}{4} \sin 4x \right] + c$ $= \frac{x}{2} + \frac{1}{8} \sin 4x + c$	1 Mark: Uses double angle formula.

1.4/1-)		
14(b) (i)	Simple harmonic motion occurs when $\ddot{x} = -n^2x$	2 Marks: Correct
	$Now x = 3\cos 2t + 4\sin 2t$	answer. 1 Mark:
	$\dot{x} = -3 \times 2\sin 2t + 4 \times 2\cos 2t$	Recognises the
	$\ddot{x} = -3 \times 2^2 \cos 2t - 4 \times 2^2 \sin 2t$	condition for
	$=-2^2(3\cos 2t + 4\sin 2t)$	SHM.
	$\ddot{x} = -2^2 x$	
14(b)	Maximum speed at $\ddot{x} = 0$ or $x = 0$ (centre of motion)	2 Marks: Correct
(ii)	$x = 3\cos 2t + 4\sin 2t = 0$	answer.
	$4\sin 2t = -3\cos 2t$	
	$\tan 2t = -\frac{3}{4}$	1 Mark: Makes
	$tan 2i = -\frac{1}{4}$	some progress towards the
	$2t = \tan^{-1}(-0.75) + n\pi$, where <i>n</i> is an integer	solution.
	$2t = -0.6435011088 + 0, \pi, 2\pi$	
	Smallest positive value of t for maximum speed	
	$t = \frac{1}{2}(-0.6435011088 + \pi) = 1.249045772$	
	$\dot{x} = -3 \times 2\sin(2 \times 1.24) + 4 \times 2\cos(2 \times 1.24) = -10$	
	Maximum speed is 10	
	Alternatively using the auxillary angle method	
	i.e. $v = -6\sin 2t + 8\cos 2t$ i.e. $v = 8\cos 2t - 6\sin 2t$	
	now writing this in the form $v = R\cos(2t + \alpha)$	
	$R = \sqrt{(-6)^2 + (8)^2} = 10$	
	$\alpha = \tan^{-1}(\frac{6}{8})$	
	$v = 10\cos(2t + \tan^{-1} 0.75)$ which has a maximum value of 10.	
14(c)	$T = Ae^{-kt} - 12$ or $Ae^{-kt} = T + 12$	1 Mark: Correct
(i)	$\frac{dT}{dt} = -kAe^{-kt}$	answer.
	dt = -k(T+12)	
14(c)	Initially $t = 0$ and $T = 24$,	1 Mark: Correct
(ii)	$T = Ae^{-kt} - 12$	answer.
	$24 = Ae^{-k \times 0} - 12$	
	A = 36	
14(c)	Also $t = 15$ and $T = 9$	3 Marks: Correct
(iii)		answer.
	$9 = 36e^{-k \times 15} - 12$	2 Marks:
	$e^{-15k} = \frac{21}{36} = \frac{7}{12}$	Determines the
	36 12	value of e^{-kt} or
		makes significant

$-15k - \log 7$	progress.
$-15k = \log_e \frac{7}{12}$	1 Mark: Finds the
$k = -\frac{1}{15}\log_e \frac{7}{12}$	exact value of <i>k</i> or shows some
= 0.03593310005	understanding.
We need to find t when $T = 0$	

14(d) (i)	$0 = 36e^{-kt} - 12$ $e^{-kt} = \frac{12}{36} = \frac{1}{3}$ $-kt = \log_e \frac{1}{3}$ $t = -\frac{1}{k} \log_e \frac{1}{3}$ $= 30.5738243 \approx 31 \text{ minutes}$ It will take about 31 minutes for the water to cool to 0°C Facing front: Number of ways = $5 \times 4 \times 7!$ Facing back: Number of ways = $4 \times 3 \times 7!$ Total number of ways = $(5 \times 4 + 4 \times 3) \times 7!$ $= 161 280$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
14(d) (ii)	Alex facing front and Bella facing back Number of ways = $5 \times 4 \times 7!$ Bella facing front and Alex facing back Number of ways = $5 \times 4 \times 7!$ Total number of ways = $(5 \times 4 \times 7!) \times 2$ = 201600	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.