Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 2-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 7-17
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What are the values of a, b and c for which the following identity is true?

$$
\frac{5 x^{2}-x+1}{x\left(x^{2}+1\right)}=\frac{a}{x}+\frac{b x+c}{x^{2}+1}
$$

(A) $a=1, b=6, c=1$
(B) $a=1, b=4, c=1$
(C) $a=1, b=6, c=-1$
(D) $a=1, b=4, c=-1$

2 The polynomial $P(z)$ has real coefficients, and $z=2-i$ is a root of $P(z)$.
Which quadratic polynomial must be a factor of $P(z)$?
(A) $z^{2}-4 z+5$
(B) $z^{2}+4 z+5$
(C) $z^{2}-4 z+3$
(D) $z^{2}+4 z+3$

3 What is the eccentricity of the ellipse $9 x^{2}+16 y^{2}=25$?
(A) $\frac{7}{16}$
(B) $\frac{\sqrt{7}}{4}$
(C) $\frac{\sqrt{15}}{4}$
(D) $\frac{5}{4}$

4 Given $z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, which expression is equal to $(\bar{z})^{-1}$?
(A) $\frac{1}{2}\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$
(B) $2\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$
(C) $\frac{1}{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
(D) $2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$

5 Which graph best represents the curve $y^{2}=x^{2}-2 x$?
(A)

(B)

(C)

(D)

6 The region bounded by the curve $y^{2}=8 x$ and the line $x=2$ is rotated about the line $x=2$ to form a solid.

Which expression represents the volume of the solid?
(A) $\pi \int_{0}^{4} 2^{2}-\left(\frac{y^{2}}{8}\right)^{2} d y$
(B) $2 \pi \int_{0}^{4} 2^{2}-\left(\frac{y^{2}}{8}\right)^{2} d y$
(C) $\pi \int_{0}^{4}\left(2-\frac{y^{2}}{8}\right)^{2} d y$
(D) $2 \pi \int_{0}^{4}\left(2-\frac{y^{2}}{8}\right)^{2} d y$

7 Which expression is equal to $\int \frac{1}{1-\sin x} d x$?
(A) $\tan x-\sec x+c$
(B) $\tan x+\sec x+c$
(C) $\log _{e}(1-\sin x)+c$
(D) $\frac{\log _{e}(1-\sin x)}{-\cos x}+c$

8 The Argand diagram shows the complex numbers w, z and u, where w lies in the first quadrant, z lies in the second quadrant and u lies on the negative real axis.

Which statement could be true?
(A) $u=z w$ and $u=z+w$
(B) $u=z w$ and $u=z-w$
(C) $z=u w$ and $u=z+w$
(D) $z=u w$ and $u=z-w$

9 A particle is moving along a straight line so that initially its displacement is $x=1$, its velocity is $v=2$, and its acceleration is $a=4$.

Which is a possible equation describing the motion of the particle?
(A) $\quad v=2 \sin (x-1)+2$
(B) $v=2+4 \log _{e} x$
(C) $v^{2}=4\left(x^{2}-2\right)$
(D) $v=x^{2}+2 x+4$

10 Which integral is necessarily equal to $\int_{-a}^{a} f(x) d x$?
(A) $\int_{0}^{a} f(x)-f(-x) d x$
(B) $\int_{0}^{a} f(x)-f(a-x) d x$
(C) $\int_{0}^{a} f(x-a)+f(-x) d x$
(D) $\int_{0}^{a} f(x-a)+f(a-x) d x$

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the complex numbers $z=-2-2 i$ and $w=3+i$.
(i) Express $z+w$ in modulus-argument form.
(ii) Express $\frac{z}{w}$ in the form $x+i y$, where x and y are real numbers.
(b) Evaluate $\int_{0}^{\frac{1}{2}}(3 x-1) \cos (\pi x) d x$.
(c) Sketch the region in the Argand diagram where $|z| \leq|z-2|$ and $-\frac{\pi}{4} \leq \arg z \leq \frac{\pi}{4}$.
(d) Without the use of calculus, sketch the graph $y=x^{2}-\frac{1}{x^{2}}$, showing all intercepts.
(e) The region enclosed by the curve $x=y(6-y)$ and the y-axis is rotated about the x-axis to form a solid.

Using the method of cylindrical shells, or otherwise, find the volume of the solid.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram shows the graph of a function $f(x)$.

Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts.
(i) $y=f(|x|)$
(ii) $y=\frac{1}{f(x)}$
(b) It can be shown that $4 \cos ^{3} \theta-3 \cos \theta=\cos 3 \theta$. (Do NOT prove this.)

Assume that $x=2 \cos \theta$ is a solution of $x^{3}-3 x=\sqrt{3}$.
(i) Show that $\cos 3 \theta=\frac{\sqrt{3}}{2}$.
(ii) Hence, or otherwise, find the three real solutions of $x^{3}-3 x=\sqrt{3}$.

Question 12 (continued)
(c) The point $P\left(x_{0}, y_{0}\right)$ lies on the curves $x^{2}-y^{2}=5$ and $x y=6$.

Prove that the tangents to these curves at P are perpendicular to one another.
(d) Let $I_{n}=\int_{0}^{1} \frac{x^{2 n}}{x^{2}+1} d x$, where n is an integer and $n \geq 0$.
(i) Show that $I_{0}=\frac{\pi}{4}$.
(ii) Show that $I_{n}+I_{n-1}=\frac{1}{2 n-1}$.
(iii) Hence, or otherwise, find $\int_{0}^{1} \frac{x^{4}}{x^{2}+1} d x$.

End of Question 12

Please turn over

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate

$$
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{3 \sin x-4 \cos x+5} d x
$$

(b) The base of a solid is the region bounded by $y=x^{2}, y=-x^{2}$ and $x=2$. Each cross-section perpendicular to the x-axis is a trapezium, as shown in the diagram. The trapezium has three equal sides and its base is twice the length of any one of the equal sides.

Find the volume of the solid.

Question 13 continues on page 11

(c) The point $S(a e, 0)$ is the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ on the positive x-axis.

The points $P(a t, b t)$ and $Q\left(\frac{a}{t},-\frac{b}{t}\right)$ lie on the asymptotes of the hyperbola, where $t>0$.

The point $M\left(\frac{a\left(t^{2}+1\right)}{2 t}, \frac{b\left(t^{2}-1\right)}{2 t}\right)$ is the midpoint of $P Q$.

(i) Show that M lies on the hyperbola.
(ii) Prove that the line through P and Q is a tangent to the hyperbola at M.
(iii) Show that $O P \times O Q=O S^{2}$.
(iv) If P and S have the same x-coordinate, show that $M S$ is parallel to one of the asymptotes of the hyperbola.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Let $P(x)=x^{5}-10 x^{2}+15 x-6$.
(i) Show that $x=1$ is a root of $P(x)$ of multiplicity three.
(ii) Hence, or otherwise, find the two complex roots of $P(x)$.
(b) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where $a>b$. The acute angle between $O P$ and the normal to the ellipse at P is ϕ.

(i) Show that $\tan \phi=\left(\frac{a^{2}-b^{2}}{a b}\right) \sin \theta \cos \theta$.
(ii) Find a value of θ for which ϕ is a maximum.

Question 14 continues on page 13

(c) A high speed train of mass m starts from rest and moves along a straight track. At time t hours, the distance travelled by the train from its starting point is $x \mathrm{~km}$, and its velocity is $v \mathrm{~km} / \mathrm{h}$.

The train is driven by a constant force F in the forward direction. The resistive force in the opposite direction is $K v^{2}$, where K is a positive constant. The terminal velocity of the train is $300 \mathrm{~km} / \mathrm{h}$.
(i) Show that the equation of motion for the train is

$$
m \ddot{x}=F\left[1-\left(\frac{v}{300}\right)^{2}\right] .
$$

(ii) Find, in terms of F and m, the time it takes the train to reach a velocity 4 of $200 \mathrm{~km} / \mathrm{h}$.

End of Question 14

Please turn over

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Three positive real numbers a, b and c are such that $a+b+c=1$ and $a \leq b \leq c$.

By considering the expansion of $(a+b+c)^{2}$, or otherwise, show that

$$
5 a^{2}+3 b^{2}+c^{2} \leq 1
$$

(b) (i) Using de Moivre's theorem, or otherwise, show that for every positive integer n,

$$
(1+i)^{n}+(1-i)^{n}=2(\sqrt{2})^{n} \cos \frac{n \pi}{4}
$$

(ii) Hence, or otherwise, show that for every positive integer n divisible by 4 ,

$$
\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots+\binom{n}{n}=(-1)^{\frac{n}{4}}(\sqrt{2})^{n}
$$

Question 15 continues on page 15

(c) A toy aeroplane P of mass m is attached to a fixed point O by a string of length ℓ. The string makes an angle ϕ with the horizontal. The aeroplane moves in uniform circular motion with velocity v in a circle of radius r in a horizontal plane.

The forces acting on the aeroplane are the gravitational force $m g$, the tension force T in the string and a vertical lifting force $k v^{2}$, where k is a positive constant.
(i) By resolving the forces on the aeroplane in the horizontal and the vertical
directions, show that $\frac{\sin \phi}{\cos ^{2} \phi}=\frac{\ell k}{m}-\frac{\ell g}{v^{2}}$.
(ii) Part (i) implies that $\frac{\sin \phi}{\cos ^{2} \phi}<\frac{\ell k}{m}$. (Do NOT prove this.)

Use this to show that

$$
\sin \phi<\frac{\sqrt{m^{2}+4 \ell^{2} k^{2}}-m}{2 \ell k}
$$

(iii) Show that $\frac{\sin \phi}{\cos ^{2} \phi}$ is an increasing function of ϕ for $-\frac{\pi}{2}<\phi<\frac{\pi}{2}$.
(iv) Explain why ϕ increases as v increases.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram shows two circles \mathscr{C}_{1} and \mathscr{C}_{2}. The point P is one of their points of intersection. The tangent to \mathscr{C}_{2} at P meets \mathscr{C}_{1} at Q, and the tangent to \mathscr{C}_{1} at P meets \mathscr{C}_{2} at R.

The points A and D are chosen on \mathscr{C}_{1} so that $A D$ is a diameter of \mathscr{C}_{1} and parallel to $P Q$. Likewise, points B and C are chosen on \mathscr{C}_{2} so that $B C$ is a diameter of \mathscr{C}_{2} and parallel to $P R$.

The points X and Y lie on the tangents $P R$ and $P Q$, respectively, as shown in the diagram.

Copy or trace the diagram into your writing booklet.
(i) Show that $\angle A P X=\angle D P Q$.
(ii) Show that A, P and C are collinear.
(iii) Show that $A B C D$ is a cyclic quadrilateral.

Question 16 (continued)
(b) Suppose n is a positive integer.
(i) Show that

$$
-x^{2 n} \leq \frac{1}{1+x^{2}}-\left(1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n-1} x^{2 n-2}\right) \leq x^{2 n}
$$

(ii) Use integration to deduce that

$$
-\frac{1}{2 n+1} \leq \frac{\pi}{4}-\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+(-1)^{n-1} \frac{1}{2 n-1}\right) \leq \frac{1}{2 n+1}
$$

(iii) Explain why $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$.
(c) Find $\int \frac{\ln x}{(1+\ln x)^{2}} d x$.

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

